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1 INTRODUCTION

Why ALT (Accelerated Life Testing) ?

• highly reliable products with long life-spans =⇒ time-consuming

and costly tests (e.g., in developing prototypes)

• the units are subjected to higher stress levels for rapid failures

in ALT

• quicker collection of information on the life distribution

• a special class of ALT is the STEP-STRESS TEST: gradual

increase of the stress at some time points during the test



Why PC (Progressive Censoring) ?

• the reasons of cost reduction and time constraint

• the efficient exploitation of the available resources

• withdrawn units are used in other experiments



PAST WORKS ON OPTIMAL ALT

• the cumulative exposure model was proposed by

Nelson (1980).

• Miller and Nelson (1983) initiated research by as-

suming the exponential distribution and complete

failure data under a simple step-stress model.

• Bai, Kim, & Lee (1989) extended the results to the

case of time-censored data.

• the case of three stress levels was dealt by Khamis

& Higgins (1996).



• Khamis and Higgins (1997) also considered the prob-

lem under a Weibull distribution.

• Khamis (1998) undertook some numerical investi-

gation for the general k-level, M-variable case.

• inference issues with the cumulative exposure model

under exponentiality were studied by Xiong (1998),

Xiong & Milliken (1999).

• Gouno, Sen, & Balakrishnan (2004) tackled the

selection problem of optimal stress change points

for a general k-level case with the large sample as-

sumption and progressively Type-I censored data.



The main objective is . . .

• to readdress the optimality problem under the large sample

assumption,

• to investigate the choice of an optimal time point for stress

change when the sample size is small to moderate,

• to suggest some practical modifications for a feasible step-

stress analysis under a PC scheme in the case of a small

sample.

We consider the equispaced step with a single τ , the

duration of each testing stage.



2 MODEL DESCRIPTIONS

AND OPTIMALITY CRITERIA

Assumptions :

(i) A cumulative exposure model holds.

(ii) For any stress level,

the lifetime of a unit ∼ Exponential.

(iii) At stress level xi, the MTTF of a unit is a log-linear function

of stress:

log θi = α + βxi,

where the regression parameters α and β are unknown.



2.1 k-LEVEL STEP-STRESS

WITH A LARGE SAMPLE

UNDER PROGRESSIVE CENSORING

We need to assume large n, small πi’s, and small k to

ensure a sufficient number of surviving items to be

censored at the end of each step.



f (t) = fi(t− (i− 1)τ )

i−1∏
j=1

Sj(τ ),

if

 (i− 1)τ ≤ t ≤ iτ for i = 1, 2, . . . , k − 1

(k − 1)τ ≤ t < ∞ for i = k
,(1)

where fi(t) =
1

θi
exp

(
− t

θi

)
for i = 1, 2, . . . , k.



F (t) = 1−

[
i−1∏
j=1

Sj(τ )

]
Si(t− (i− 1)τ ),

if

 (i− 1)τ ≤ t ≤ iτ for i = 1, 2, . . . , k − 1

(k − 1)τ ≤ t < ∞ for i = k
,(2)

where

Fi(t) = 1− exp

(
− t

θi

)
,

Si(t) = 1− Fi(t) = exp

(
− t

θi

)
.



Lemma 2.1.1. The JPDF of y and n is

fJ(y,n) =

[
k∏

i=1

Ni!

(Ni − ni)!

][
k∏

i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui

θi

)
,

where

Ui =

ni∑
j=1

(yi,j − (i− 1)τ ) + (Ni − ni)τ, i = 1, 2, . . . , k.

Note that Ui is precisely the Total Time on Test statistic

at stress level xi.



Lemma 2.1.2. The MLEs α̂ and β̂ are obtained as simulta-

neous solutions to the following two non-linear equations:

α̂ = log

(∑k
i=1 Ui exp (−β̂xi)∑k

i=1 ni

)
,

[
k∑

i=1

ni

][
k∑

i=1

Uixi exp (−β̂xi)

]
−

k∑
i=1

nixi

k∑
i=1

Ui exp (−β̂xi) = 0.



Non-linearity of α̂ and β̂ =⇒ virtually impossible to

find their exact marginal/joint distributions for exact

inference

∴ statistical inference on the MLEs are based on the

asymptotic distributional result.

(
α̂

β̂

)
∼ BV N

((
α

β

)
, [In(α, β)]−1

)
as n →∞



Theorem 2.1.1. Given n1, n2, . . . , ni−1, the random variable

ni has a binomial distribution with parameters (Ni, Fi(τ )) for

i = 1, 2, . . . , k.

Corollary 2.1.1. For i = 1, 2, . . . , k,

E[ni] = E[Ni]Fi(τ ).



Theorem 2.1.2. Given n1, n2, . . . , ni, the random variables

(yi,j − (i − 1)τ ), j = 1, 2, . . . , ni, constitute the order statis-

tics from a random sample of size ni with a right-truncated

exponential distribution whose PDF is defined as

fi,τ(z) =


fi(z)

Fi(τ )
, 0 ≤ z ≤ τ

0, otherwise

=


e−z/θi

θi(1− e−τ/θi)
, 0 ≤ z ≤ τ

0, otherwise

, (3)

for i = 1, 2, . . . , k.



Corollary 2.1.2. For i = 1, 2, . . . , k,

E

[
ni∑

l=1

(yi,j − (i− 1)τ )

]
= E[Ni](θiFi(τ )− τSi(τ )).

Lemma 2.1.3. For i = 1, 2, . . . , k,

E[Ni] = n

[
1−

i−1∑
j=1

πj

Gj(τ )

]
Gi−1(τ ),

where

Gj(τ ) = Gj−1(τ )Sj(τ ) =

j∏
i=1

Si(τ ).



Theorem 2.1.3. The expected information matrix of α and

β is

In(α, β) = n


k∑

i=1

Ai(τ )

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )x2
i

 ,

where

Ai(τ ) =

[
1−

i−1∑
j=1

πj

Gj(τ )

]
Gi−1(τ )Fi(τ ).



2.2 OPTIMALITY CRITERION FUNCTIONS

AND EXISTENCE OF OPTIMAL

STRESS CHANGE POINT

• Ai(τ ) exemplifies the complexity introduced by the PC scheme.

• For certain values of τ , Ai(τ ) can be negative giving rise to

disconcerting anomalies such as a negative determinant of

In(α, β) or a negative variance function.

∴ We need to confine the search for optimal τ to the region

Cτ = {τ : Ai(τ ) > 0, i = 2, 3, . . . , k}.



2.2.1 V-OPTIMALITY

φ(τ ) = n · AVar(log θ̂0) = n · AVar(α̂ + β̂x0)

= n · (1, x0)I
−1
n (α, β)

(
1

x0

)

=

2 ·
k∑

i=1

Ai(τ )(xi − x0)
2

k∑
i=1

k∑
j=1

Ai(τ )Aj(τ )(xi − xj)
2

(4)

The V-optimal τ (viz., τ ∗V ) minimizes φ(τ ) to estimate

the MTTF of a unit at the use-condition (viz., θ0) with

maximum precision and minimum variability.



2.2.2 D-OPTIMALITY

• the overall volume of the asymptotic joint confidence region

of (α, β) ∝ |I−1
n (α, β)|1/2

• a larger value of |In(α, β)| =⇒ a smaller asymptotic joint con-

fidence ellipsoid of (α, β) =⇒ a higher joint precision of (α̂, β̂)

The D-optimal τ (viz., τ ∗D) maximizes

δ(τ ) = n−2|In(α, β)|

=
1

2

k∑
i=1

k∑
j=1

Ai(τ )Aj(τ )(xi − xj)
2. (5)



2.2.3 A-OPTIMALITY

• the sum of marginal Fisher information terms of

the parameters ≡ the sum of the diagonal elements

or trace of In(α, β)

• a general measure of the size of In(α, β)

a(τ ) =
1

n
tr(In(α, β))

=

k∑
i=1

Ai(τ ) +

k∑
i=1

Ai(τ )x2
i =

k∑
i=1

Ai(τ )(1 + x2
i ). (6)

The A-optimal τ (viz., τ ∗A) maximizes a(τ ).



Proposition 2.2.1. In the case of the simple step-stress test-

ing with progressive Type-I censoring, there exists an optimal

step duration τ ∗V which is the solution of φ′(τ ) = 0.

Proposition 2.2.2. In the case of the simple step-stress test

under progressive Type-I censoring, the D-optimal stress change

point τ ∗D is the solution of A′
1(τ )A2(τ ) + A1(τ )A′

2(τ ) = 0.

Proposition 2.2.3. For the simple step-stress test with pro-

gressive Type-I censoring, the A-optimal stress change point

τ ∗A exists when
x2

2 − x2
1

1 + x2
2

> π
θ1/θ2
1 , and it is the solution of

a′(τ ) = 0. Otherwise, τ ∗A = −θ1 log π1.



2.3 k-LEVEL STEP-STRESS

WITH A SMALL SAMPLE

UNDER PROGRESSIVE CENSORING

PROBLEMS OF THE ASYMPTOTIC MODEL:

• a small sample size in a real reliability experiment

• severe censoring due to various reasons including

the budgetary constraints and facility requirements

∴ We need a modification to guarantee a feasible PC

scheme.



One such modification is to decide on a fixed propor-

tion of unfailed items to be removed at the end of

each stage. First, define a vector of fixed proportions

π∗ = (π∗1, π
∗
2, . . . , π

∗
k−1),

where 0 ≤ π∗i < 1 for i = 1, 2, . . . , k − 1. The number of

censored items at the end of stress level xi is

ci = Υ((Ni − ni)π
∗
i ) for i = 1, 2, . . . , k − 1,



where Υ(·) is a discretizing function of one’s choice,

mapping its argument to a non-negative integer (e.g.,

round(·), floor(·), ceiling(·), trunc(·), etc).

Under this modification, we allow the life test to ter-

minate before reaching the last stress level xk.



• we shall assume

ci = (Ni − ni)π
∗
i for i = 1, 2, . . . , k − 1.

• when π∗ = (0, 0, . . . , 0) = 0k−1, we have c = 0k−1 and

π = 0k−1, and it corresponds to the case of a k-

level step-stress testing under Type-I right censor-

ing with ck = n−
k∑

j=1

nj.

• if ck > 0 or nk > 0 (equivalently, Nk = nk + ck > 0), it

implies that the life test has proceeded to the last

stress level xk.



Lemma 2.3.1. For i = 1, 2, . . . , k,

E[Ni] = n
i−1∏
j=1

Sj(τ )(1− π∗j ).



Theorem 2.3.1. Under the proposed modification, the ex-

pected information matrix of α and β is

In(α, β) = n


k∑

i=1

Ai(τ )

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )x2
i

 ,

where

Ai(τ ) = Fi(τ )

i−1∏
j=1

Sj(τ )(1− π∗j ).



2.4 OPTIMALITY CRITERION FUNCTIONS

AND EXISTENCE OF OPTIMAL

STRESS CHANGE POINT

• Ai(τ ) > 0 for all τ > 0 =⇒ eliminates any disconcert-

ing anomalies

• since the censoring is based on the number of sur-

viving units at the end of each stage, censoring

beyond what is available on test is prevented.

∴ no restriction on the search region for optimal τ

after modification (i.e., Cτ = {τ : τ > 0}).



Proposition 2.4.1. In the case of the simple step-stress test-

ing with progressive Type-I censoring, there exists an optimal

step duration τ ∗V which is the solution of φ′(τ ) = 0.

Proposition 2.4.2. In the case of the simple step-stress test

under progressive Type-I censoring, the D-optimal stress change

point τ ∗D is the solution of A′
1(τ )A2(τ ) + A1(τ )A′

2(τ ) = 0.



Proposition 2.4.3. For the simple step-stress test with pro-

gressive Type-I censoring, the A-optimal stress change point

is

τ ∗A = θ2 log

[(
1+

θ1

θ2

)
(1−QA

1 )−1

]
where QA

1 =
1 + x2

1

(1− π∗1)(1 + x2
2)

,

and it exists when
x2

2 − x2
1

1 + x2
2

> π∗1. Otherwise, τ ∗A does not exist.



2.5 OTHER MODIFICATION FOR A VIABLE

k-LEVEL STEP-STRESS TESTING UNDER PC

One may want to censor a pre-determined number of units in-

stead of a proportion of live units at the end of each stage so

that the experimenter knows how many units would be freed

by censoring at the end of the current stage given that the test

should proceed to the next stress level. We first define

c∗ = (c∗1, c
∗
2, . . . , c

∗
k−1),

where c∗i is the fixed number of units to be removed at the end

of stress level xi for i = 1, 2, . . . , k − 1.



The actual number of progressively censored units at

stress level xi is

ci = min{c∗i , Ni − ni} (7)

= min

{
c∗i , n−

i∑
j=1

nj −
i−1∑
j=1

cj

}
,

for i = 1, 2, . . . , k − 1. We take ck = Nk − nk as before.



• when c∗ = (0, 0, . . . , 0) = 0k−1, we have c = 0k−1

and π = 0k−1 as well. Then, it is the case of a

k-level step-stress testing under Type-I right cen-

soring with ck = n−
k∑

j=1

nj.

• when ck > 0 or nk > 0 (equivalently, Nk = nk +ck > 0),

the life test has proceeded to the last stress level

xk.



Lemma 2.5.1. E[N1] = n, and for i = 1, 2, . . . , k − 1,

E[Ni+1] =

ηi,1∑
n1=0

ηi,2∑
n2=0

· · ·
ηi,i−1∑

ni−1=0

[
(N ∗

i − c∗i )B
[i]
N∗

i
(ηi,i)

−N ∗
i Fi(τ )B

[i]
N∗

i −1(ηi,i − 1)
]
pJ(n1, n2, . . . , ni−1),

where



ηi,l = ηi,l−1 − nl−1 = n−
l−1∑
j=1

nj −
i∑

j=1

c∗j − 1,

for l = 1, 2, . . . , i,

N ∗
i = N ∗

i−1 − ni−1 − c∗i−1 = n−
i−1∑
j=1

nj −
i−1∑
j=1

c∗j ,

B
[i]
N (x) = Pr(X ≤ x) wherein X ∼ Binomial(N, Fi(τ ))

=

x∑
j=0

(
N

j

)
[Fi(τ )]j[Si(τ )]N−j, 0 ≤ x ≤ N,

and pJ(n1, n2, . . . , ni−1) is the JPMF of (n1, n2, . . . , ni−1) as

given in corollary 2.1.2.



Theorem 2.5.1. The expected information matrix of α and

β under the proposed modification is

In(α, β) = n


k∑

i=1

Ai(τ )

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )x2
i

 ,

where

Ai(τ ) =
1

n
E[ni] =

1

n
E[Ni]Fi(τ )

with E[Ni] as obtained in lemma 2.5.1.



Ai(τ ) > 0 for all τ > 0 =⇒ E[Ni] > 0 for i = 1, 2, . . . , k

∴ the search region for optimal τ is unrestricted

(i.e., Cτ = {τ : τ > 0}).



2.6 CONDITIONAL ANALYSIS

OF k-LEVEL STEP-STRESS

UNDER PROGRESSIVE CENSORING

We tackle the problem of selecting an optimal stress duration

using the conditional approach. We observe that

{n : Nk > 0} ⊂ {n : Nk−1 > 0} ⊂ · · · ⊂ {n : N1 ≡ n > 0} = {n}

and thus,

{n : N2 > 0, N3 > 0, . . . , Nk > 0}

= {n : N2 > 0} ∩ {n : N3 > 0} ∩ · · · ∩ {n : Nk > 0}

= {n : Nk > 0}.





Condition of successful censoring at every stress level

≡ Condition of the test proceeding to the last level xk

Lemma 2.6.1. For i = 1, 2, . . . , k − 1,

Pr(Nk = 0|n1, n2, . . . , ni−1) = [Hi(τ )]Ni,

where

Hi(τ ) =

 Fi(τ ) + Si(τ )[Hi+1(τ )]1−π∗i , for i = 1, 2, . . . , k − 1

0, for i = k



Corollary 2.6.1. For k stress levels, the probability of a life

test proceeding to stress level xk is

Pr(Nk > 0) = 1− [H1(τ )]n.



Theorem 2.6.1. For i = 1, 2, . . . , k,

Ec[ni] = E[ni|Nk > 0] = E[ni]
1− Vi(τ )

1− [H1(τ )]n
,

where

Vi(τ ) =


[H1(τ )]n−1∏i−1

j=1[Hj+1(τ )]π
∗
j
, for i = 1, 2, . . . , k − 1

0, for i = k

and

E[ni] = n

[
i−1∏
j=1

Sj(τ )(1− π∗j )

]
Fi(τ ).



Lemma 2.6.2. For i = 1, 2, . . . , k,

Ec[Ni] = E[Ni|Nk > 0] = E[Ni]
1−Hi(τ )Vi(τ )

1− [H1(τ )]n
,

where E[Ni] is as given previously.



Theorem 2.6.2. The expected information matrix of the regression pa-

rameters, α and β, conditioned on Nk > 0 is

In(α, β) = n


k∑

i=1

Ai(τ )

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )xi

k∑
i=1

Ai(τ )x2
i

 ,

where

Ai(τ ) =
E[Ni]

n(1− [H1(τ )]n)

[
(1− Vi(τ ))Fi(τ ) +

τ

θi
(1−Hi(τ ))Vi(τ )

]

=
1

1− [H1(τ )]n

[
i−1∏
j=1

Sj(τ )(1− π∗j )

]
×
[
(1− Vi(τ ))Fi(τ ) + τ (1−Hi(τ ))Vi(τ ) exp(α + βxi)

]
.



REMARK:

0 ≤ H1(τ ) < 1, and so it follows immediately that

lim
n→∞

Pr(Nk > 0) = 1− lim
n→∞

[H1(τ )]n = 1.

Then, for i = 1, 2, . . . , k,

lim
n→∞

Vi(τ ) =
lim

n→∞
[H1(τ )]n−1∏i−1

j=1[Hj+1(τ )]π
∗
j

= 0,

lim
n→∞

Ec[ni] = E[ni],

lim
n→∞

Ec[Ni] = E[Ni].



∴ all the distributional results obtained by condition-

ing on Nk > 0 ultimately converge to the unconditional

results when the sample size n gets larger.

Conditioning makes less relevance to the analysis when

the initial sample size is large.



3 NUMERICAL STUDIES AND RESULTS

• to investigate the existence of the optimal stress

change points,

• to evaluate them as a function of varying parame-

ters (viz., the sample size, MTTF, the number of

stress levels, and the degree of censoring).



For the entire study, xi = x0 + id with x0 = 10 and

d = 5. With this setup, optimizing with respect to

either of the V-optimality or D-optimality criterion is

independent of x0 and d even though the A-optimality

criterion is sensitive to the choice of x0 and d.

We also set

θi+1 = ρθi, i = 1, 2, . . . , k − 1, 0 < ρ < 1,

with selected values of θ1 and ρ. Using this formula, a

decreasing geometric sequence of MTTF is simulated

with an increasing arithmetic sequence of stress levels.



.



Table 3.1: Optimal Stress Change Points under the Large Sample Asymptotics

with the Overall PC Proportion being 10%

k = 2 k = 3 k = 4

πi = 0.1 τ ∗
V τ ∗

D τ ∗
A τ ∗

V τ ∗
D τ ∗

A τ ∗
V τ ∗

D τ ∗
A

ρ = 0.1 91.6 60.6 30.9 10.1 6.6 3.1 1.0 0.7 0.3

θ1 = 100 ρ = 0.3 93.6 72.7 64.1 31.4 21.6 16.2 9.9 6.7 4.7

ρ = 0.5 95.1 81.2 87.7 45.5 34.6 30.9 21.4 15.9 13.2

ρ = 0.1 274.9 181.7 92.8 30.4 19.9 9.2 2.9 2.1 1.0

θ1 = 300 ρ = 0.3 280.7 218.0 192.4 94.2 64.7 48.7 29.6 20.0 14.1

ρ = 0.5 285.4 243.5 263.0 136.6 103.8 92.8 64.1 47.7 39.5

ρ = 0.1 458.2 302.9 154.7 50.7 33.1 15.4 4.8 3.4 1.6

θ1 = 500 ρ = 0.3 467.8 363.3 320.6 157.0 107.9 81.1 49.3 33.4 23.5

ρ = 0.5 475.7 405.8 438.3 227.7 173.0 154.7 106.7 79.6 65.9



Table 3.2: Optimal Stress Change Points under the Large Sample Asymptotics

with the Overall PC Proportion being 20%

k = 2 k = 3 k = 4

πi = 0.2 τ ∗
V τ ∗

D τ ∗
A τ ∗

V τ ∗
D τ ∗

A τ ∗
V τ ∗

D τ ∗
A

ρ = 0.1 76.3 52.3 29.5 7.2 5.1 2.8 0.6 0.5 0.3

θ1 = 100 ρ = 0.3 77.9 63.1 59.1 20.8 16.3 13.9 5.0 4.2 3.6

ρ = 0.5 78.4 69.3 79.0 30.0 25.3 25.4 10.8 9.4 9.4

ρ = 0.1 228.8 156.9 88.4 21.5 15.4 8.5 1.7 1.4 0.8

θ1 = 300 ρ = 0.3 233.6 189.2 177.3 62.5 49.0 41.6 15.0 12.5 10.8

ρ = 0.5 235.3 207.9 237.0 90.1 76.0 76.1 32.4 28.2 28.1

ρ = 0.1 381.3 261.5 147.4 35.9 25.7 14.2 2.9 2.3 1.4

θ1 = 500 ρ = 0.3 389.4 315.3 295.5 104.2 81.7 69.4 25.0 20.8 17.9

ρ = 0.5 392.2 346.6 395.0 150.2 126.6 126.8 54.0 47.1 46.8



Figure 3.1: Plots of the Objective Functions for Each Optimality Criterion

under the Large Sample Asymptotics with πi = 0.1, θ1 = 100, and ρ = 0.3



Figure 3.2: Plots of the Objective Functions for Each Optimality Criterion

under the Large Sample Asymptotics with πi = 0.2, θ1 = 300, and ρ = 0.5



Figure 3.3: Plots of the Objective Functions for Each Optimality Criterion

under the Modification of ci = (Ni − ni)π
∗
i with π∗

i = 0.3, θ1 = 50, and ρ = 0.1



Figure 3.4: Plots of the Objective Functions for Each Optimality Criterion

under the Modification of ci = (Ni − ni)π
∗
i with π∗

i = 0.5, θ1 = 70, and ρ = 0.7



Table 3.3: Fixed PC Proportions under the Modification of ci = (Ni − ni)π
∗
i

for the Expected Overall PC Proportion at 10%

πi = 0.1 k = 2 k = 3 k = 4

Optimality V D A V D A V D A

π∗
1 π∗

1 π∗
1 π∗

1 π∗
2 π∗

1 π∗
2 π∗

1 π∗
2 π∗

1 π∗
2 π∗

3 π∗
1 π∗

2 π∗
3 π∗

1 π∗
2 π∗

3

ρ = 0.1 0.25 0.18 0.14 0.11 0.34 0.11 0.23 0.10 0.16 0.10 0.12 0.37 0.10 0.12 0.27 0.10 0.12 0.18

θ1 = 100 ρ = 0.3 0.25 0.21 0.19 0.14 0.45 0.12 0.29 0.12 0.23 0.11 0.17 0.62 0.11 0.15 0.37 0.10 0.14 0.27

ρ = 0.5 0.26 0.23 0.24 0.16 0.47 0.14 0.33 0.14 0.29 0.12 0.22 0.65 0.12 0.18 0.42 0.11 0.17 0.34

ρ = 0.1 0.25 0.18 0.14 0.11 0.34 0.11 0.23 0.10 0.16 0.10 0.12 0.37 0.10 0.12 0.27 0.10 0.12 0.18

θ1 = 300 ρ = 0.3 0.25 0.21 0.19 0.14 0.45 0.12 0.29 0.12 0.23 0.11 0.17 0.62 0.11 0.15 0.37 0.10 0.14 0.27

ρ = 0.5 0.26 0.23 0.24 0.16 0.47 0.14 0.33 0.14 0.29 0.12 0.22 0.65 0.12 0.18 0.42 0.11 0.17 0.34

ρ = 0.1 0.25 0.18 0.14 0.11 0.34 0.11 0.23 0.10 0.16 0.10 0.12 0.37 0.10 0.12 0.27 0.10 0.12 0.18

θ1 = 500 ρ = 0.3 0.25 0.21 0.19 0.14 0.45 0.12 0.29 0.12 0.23 0.11 0.17 0.62 0.11 0.15 0.37 0.10 0.14 0.27

ρ = 0.5 0.26 0.23 0.24 0.16 0.47 0.14 0.33 0.14 0.29 0.12 0.22 0.65 0.12 0.18 0.42 0.11 0.17 0.34



Table 3.4: Fixed PC Proportions under the Modification of ci = (Ni − ni)π
∗
i

for the Expected Overall PC Proportion at 20%

πi = 0.2 k = 2 k = 3 k = 4

Optimality V D A V D A V D A

π∗
1 π∗

1 π∗
1 π∗

1 π∗
2 π∗

1 π∗
2 π∗

1 π∗
2 π∗

1 π∗
2 π∗

3 π∗
1 π∗

2 π∗
3 π∗

1 π∗
2 π∗

3

ρ = 0.1 0.43 0.34 0.27 0.21 0.56 0.21 0.45 0.21 0.34 0.20 0.27 0.65 0.20 0.26 0.56 0.20 0.26 0.46

θ1 = 100 ρ = 0.3 0.44 0.38 0.36 0.25 0.65 0.24 0.53 0.23 0.47 0.21 0.31 0.80 0.21 0.30 0.69 0.21 0.29 0.62

ρ = 0.5 0.44 0.40 0.44 0.27 0.67 0.26 0.58 0.26 0.58 0.22 0.36 0.85 0.22 0.34 0.75 0.22 0.34 0.75

ρ = 0.1 0.43 0.34 0.27 0.21 0.56 0.21 0.45 0.21 0.34 0.20 0.27 0.65 0.20 0.26 0.56 0.20 0.26 0.46

θ1 = 300 ρ = 0.3 0.44 0.38 0.36 0.25 0.65 0.24 0.53 0.23 0.47 0.21 0.31 0.80 0.21 0.30 0.69 0.21 0.29 0.62

ρ = 0.5 0.44 0.40 0.44 0.27 0.67 0.26 0.58 0.26 0.58 0.22 0.36 0.85 0.22 0.34 0.75 0.22 0.34 0.75

ρ = 0.1 0.43 0.34 0.27 0.21 0.56 0.21 0.45 0.21 0.34 0.20 0.27 0.65 0.20 0.26 0.56 0.20 0.26 0.46

θ1 = 500 ρ = 0.3 0.44 0.38 0.36 0.25 0.65 0.24 0.53 0.23 0.47 0.21 0.31 0.80 0.21 0.30 0.69 0.21 0.29 0.62

ρ = 0.5 0.44 0.40 0.44 0.27 0.67 0.26 0.58 0.26 0.58 0.22 0.36 0.85 0.22 0.34 0.75 0.22 0.34 0.75



Table 3.5: Optimal Stress Change Points for the Simple Step-Stress Testing (k = 2)

under the Condition of Nk > 0 with the Expected Overall PC Proportion being 10%

n = 5 n = 10 n ≥ 20

π1 = 0.1 τ ∗
V τ ∗

D τ ∗
A τ ∗

V τ ∗
D τ ∗

A τ ∗
V τ ∗

D τ ∗
A

ρ = 0.1 119.6 71.2 DNE (31.4) 93.6 60.8 DNE (30.9) 91.6 60.6 30.9

θ1 = 100 ρ = 0.3 123.2 90.6 DNE 95.7 73.3 DNE (64.6) 93.6 72.7 64.1

ρ = 0.5 130.5 113.6 DNE 97.7 82.5 DNE (92.8) 95.1 81.2 87.7

ρ = 0.1 358.7 213.7 DNE (94.2) 280.7 182.5 DNE (92.8) 274.9 181.7 92.8

θ1 = 300 ρ = 0.3 369.7 271.7 DNE 287.2 220.0 DNE (193.7) 280.7 218.0 192.4

ρ = 0.5 391.6 340.9 DNE 293.1 247.6 DNE (278.4) 285.4 243.5 263.0

ρ = 0.1 597.9 356.2 DNE (157.0) 467.9 304.1 DNE (154.7) 458.2 302.9 154.7

θ1 = 500 ρ = 0.3 616.1 452.9 DNE 478.7 366.7 DNE (322.9) 467.8 363.3 320.6

ρ = 0.5 652.6 568.1 DNE 488.5 412.7 DNE (463.9) 475.7 405.8 438.3



Table 3.6: Optimal Stress Change Points for the Simple Step-Stress Testing (k = 2)

under the Condition of Nk > 0 with the Expected Overall PC Proportion being 20%

n = 5 n = 10 n ≥ 20

π1 = 0.2 τ ∗
V τ ∗

D τ ∗
A τ ∗

V τ ∗
D τ ∗

A τ ∗
V τ ∗

D τ ∗
A

ρ = 0.1 87.1 56.9 DNE (29.9) 76.8 52.4 29.5 76.3 52.3 29.5

θ1 = 100 ρ = 0.3 89.8 71.2 DNE 78.5 63.3 59.4 77.9 63.1 59.1

ρ = 0.5 91.9 81.8 DNE 79.1 69.8 81.3 78.4 69.3 79.0

ρ = 0.1 261.3 170.8 DNE (89.6) 230.4 157.1 88.4 228.8 156.9 88.4

θ1 = 300 ρ = 0.3 269.3 213.6 DNE 235.5 189.9 178.1 233.6 189.2 177.3

ρ = 0.5 275.8 245.3 DNE 237.4 209.3 243.8 235.3 207.9 237.0

ρ = 0.1 435.5 284.6 DNE (149.3) 384.0 261.9 147.4 381.3 261.5 147.4

θ1 = 500 ρ = 0.3 448.8 356.0 DNE 392.5 316.5 296.8 389.4 315.3 295.5

ρ = 0.5 459.6 408.8 DNE 395.7 348.8 406.3 392.2 346.6 395.0



Figure 3.5: Plots of the Objective Functions for Each Optimality Criterion

for the Simple Step-Stress Testing (k = 2) under the Condition of Nk > 0

with n = 5, θ1 = 100, and the Expected Overall PC Proportion at 10%



Figure 3.6: Plots of the Objective Functions for Each Optimality Criterion

for the Simple Step-Stress Testing (k = 2) under the Condition of Nk > 0

with n = 5, θ1 = 300, and the Expected Overall PC Proportion at 20%



Table 3.7: Fixed PC Proportions π∗
1 for the Simple Step-Stress Testing (k = 2)

under the Condition of Nk > 0 with the Expected Overall PC Proportion being 10%

π1 = 0.1 n = 5 n = 10 n ≥ 20

Optimality V D A V D A V D A

ρ = 0.1 0.28 0.20 DNE (0.14) 0.25 0.18 DNE (0.14) 0.25 0.18 0.14

θ1 = 100 ρ = 0.3 0.28 0.23 DNE 0.26 0.21 DNE (0.19) 0.25 0.21 0.19

ρ = 0.5 0.29 0.27 DNE 0.26 0.23 DNE (0.25) 0.26 0.23 0.24

ρ = 0.1 0.28 0.20 DNE (0.14) 0.25 0.18 DNE (0.14) 0.25 0.18 0.14

θ1 = 300 ρ = 0.3 0.28 0.23 DNE 0.26 0.21 DNE (0.19) 0.25 0.21 0.19

ρ = 0.5 0.29 0.27 DNE 0.26 0.23 DNE (0.25) 0.26 0.23 0.24

ρ = 0.1 0.28 0.20 DNE (0.14) 0.25 0.18 DNE (0.14) 0.25 0.18 0.14

θ1 = 500 ρ = 0.3 0.28 0.23 DNE 0.26 0.21 DNE (0.19) 0.25 0.21 0.19

ρ = 0.5 0.29 0.27 DNE 0.26 0.23 DNE (0.25) 0.26 0.23 0.24



Table 3.8: Fixed PC Proportions π∗
1 for the Simple Step-Stress Testing (k = 2)

under the Condition of Nk > 0 with the Expected Overall PC Proportion being 20%

π1 = 0.2 n = 5 n = 10 n ≥ 20

Optimality V D A V D A V D A

ρ = 0.1 0.45 0.35 DNE (0.27) 0.43 0.34 0.27 0.43 0.34 0.27

θ1 = 100 ρ = 0.3 0.46 0.39 DNE 0.44 0.38 0.36 0.44 0.38 0.36

ρ = 0.5 0.46 0.43 DNE 0.44 0.40 0.45 0.44 0.40 0.44

ρ = 0.1 0.45 0.35 DNE (0.27) 0.43 0.34 0.27 0.43 0.34 0.27

θ1 = 300 ρ = 0.3 0.45 0.39 DNE 0.44 0.38 0.36 0.44 0.38 0.36

ρ = 0.5 0.46 0.43 DNE 0.44 0.40 0.45 0.44 0.40 0.44

ρ = 0.1 0.45 0.35 DNE (0.27) 0.43 0.34 0.27 0.43 0.34 0.27

θ1 = 500 ρ = 0.3 0.45 0.39 DNE 0.44 0.38 0.36 0.44 0.38 0.36

ρ = 0.5 0.46 0.43 DNE 0.44 0.40 0.45 0.44 0.40 0.44
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